

TUTORIAL DE CONFIGURAÇÃO DO SERVO MOTOR

SUMÁRIO

INTRODUÇÃO	2
INSTALAÇÃO	3
CONFIGURAÇÃO DO MOTOR NO DRIVE CM	5
COMUNICAÇÃO	5
PARÂMETROS DO MOTOR	5
ENTRADA DIGITAL	Э
AUTO-TUNING (AUTO-SINTONIA)1	1
TESTE DO SERVO DRIVE NO DRIVE CM1	5
MANUAL JOG1	5
PROGRAM JOG1	3
LISTA DE FIGURAS	4

SIMILAR TECNOLOGIA E AUTOMAÇÃO

INTRODUÇÃO

O objetivo deste documento é orientar na instalação e configuração de um servo motor, com a criação de um programa de exemplo para auxiliar na compreensão e projetos de servo motores.

Neste tutorial, os seguintes dispositivos foram utilizados:

- Driver: L7CA004U;
- Servo: APMC-FBL04AYK;
- Cabo de Alimentação: APCS-PN05LSC;
- Cabo de encoder: APCS-EN05ES;
- Cabo de I/O: APC-CN105A;
- CLP: XBC-DN40SU;

E os softwares:

- Drive CM;
- XG5000.

SIMILAR TECNOLOGIA E AUTOMAÇÃO

INSTALAÇÃO

Figura 1 - Instalação Elétrica.

1- Ligue o conector APCS-PN05LSC ao Servo e os cabos U, V, W e o Terra no Driver:

Figura 2 – Alimentação do servo motor.

SIMILAR TECNOLOGIA E AUTOMAÇÃO

2- Um resistor de potência deve ser inserido entre B e B+ para evitar a queima do Driver, de acordo com a tabela a seguir:

Make sure to use the standard resistance values for the B+ and B terminals when using external regenerative resistance.

Models	Resistance	Standard Capacity	* Notes	
100[W]		External 50[W]	▲ Caution	
200[W]	100[A]		For resistance values to use during regenerative capacity expansion, refer to	
400[W]			Section 16.3, "Optional and Peripheral Devices."	
800[W]	40[Ω]	101.01	Estamol 100044	
1[kW]		External 100[W]		

Figura 3 - Tabela de resistor regenerativo.

Como neste tutorial o motor é de 400W, foi utilizado uma resistência de aproximadamente 100Ω .

3- A alimentação deste modelo de Driver é 220V e deve ser conectado em L1 e L2 e o Terra no aterramento:

Figura 4 - Alimentação do servo drive.

SIMILAR TECNOLOGIA E AUTOMAÇÃO

4- Ligue o conector de encoder APCS-EN05ES ao Servo e a outra ponta do conector no Driver:

Figura 5 - Ligação do cabo de Encoder.

SIMILAR TECNOLOGIA E AUTOMAÇÃO

CONFIGURAÇÃO DO MOTOR NO DRIVE CM

COMUNICAÇÃO

- 1- Conecte o cabo USB ao Driver e ao PC.
- 2- Abra o software Drive CM, escolha o modo de conexão USB, o tipo de drive deste tutorial é o L7C e clique em conectar:

Drive/M	Motor	I/O	Fault	Monitoring	Procedures	Advance
2	USB	-	L7C:	Indexing driv	e •	1

Figura 6 - Conexão USB no Drive CM.

PARÂMETROS DO MOTOR

3- Entre em "Drive/Motor" -> "Motor Encoder"

Figura 7 - Motor Encoder.

4- O parâmetro "Motor ID" deve ser alterado para o ID do servo motor da LS:

Item	Value	Unit or Descriptions
Motor Setup		
3rd party Motor*	Yes/No	
Motor ID*	716	
Linear Motor*	Yes/No	
Magnetic Pole Pitch*	2400	0.01mm
Commutation Method*	Use hall 🗸 🗸	Hall commutation or does not need commutation
Commutation Current	500	0.1%
Commutation Time	1000	ms

Este dado está na lateral do servo motor, nos dados de placa, que no caso do APMC-FBL04AYK é o ID 716.

SIMILAR TECNOLOGIA E AUTOMAÇÃO

Insira o valor 716 e aperte ENTER.

Figura 9 - Motor ID.

5- Salve na memória EEPROM, clicando em "Save to Memory" e espere a mensagem de aviso desaparecer automaticamente.

xer Object Dictionary Setup About	
Value	Unit or Descriptions
Yes/No	
716	
Yes/No	
2400	0.01mm
Use hall 🗸	Hall commutation or does not need commutation
500	0.1%
1000	me
Please wait a few seco will disappear automa	ond while saving parameters! This message box stically.
	OK
o	

Figura 10 - Save to Memory.

SIMILAR TECNOLOGIA E AUTOMAÇÃO

6- Reinicie o software clicando em "Software Reset"

Figura 11 - Software Reset.

7- Com isso, a quantidade de Bits do encoder será atualizada automaticamente. Pois neste caso o encoder do servo motor é de 17 bits, ou seja, a resolução de 2^17=131072.

l	Encoder Setup			Ξ
l	Encoder Type*	BiSS(C) multi-turn 🗸	BiSS Serial Absolute (16 bit Multi-turn)	
l	Resolution*	131072	ppr	
l	Grating Period*	40	um	
	ABS. Encoder Configuration*	Config 1 🗸	Uses the absolute encoder as the incremental encoder Does not use the mult	

Figura 12 - Parâmetro de resolução do encoder.

8- Entre em "Drive/Motor" -> "Regenerative Resistor" para configurar o resistor conectado em B e B+.

Figura 13 - Resistor Regenerativo.

9- A resistência foi medida com um multímetro e os dados foram preenchidos conforme a imagem da tabela a seguir:

SIMILAR TECNOLOGIA E AUTOMAÇÃO

Item	Value	Unit or Descriptions
Regenerative Resistor Configuration		
Use External Resistor	Ves/No	
Resistor Value	93	ohm
Resistor Power	10	Watt
Resistor Peak Power	100	Watt
Duration Time at Peak Power	5000	ms
Derating Factor	100	%

Figura 14 - Parâmetros do resistor regenerativo.

ENTRADA DIGITAL

10- Entre em "I/O" -> "Digital Input":

Figura 15 - Entrada digital.

11- Altere todas as entradas digitais para HIGH para um teste inicial de drive no software Drive CM, se não o Drive entra em alarme de aviso caso POT, NOT ou EMG esteja em LOW.

Figura 16 - Parâmetros de entrada digital.

SIMILAR TECNOLOGIA E AUTOMAÇÃO

12- Entre em "Procedures" -> "Misc. Function".

	Proce	dures	Advanced	Indexer	Object D
	F	Program	n Jog		
Ve	1	Manual	Jog		
ł.	4	Auto-Tu	uning		
l	F	PTP Mo	ve		
l	H	Homing	J		
l	٦	Touch I	Probe		
l	1	Motor/H	Hall Phase Co	prrection	
	1	Misc. Fi	unctions		

Figura 17 - Misc. Functions.

13- Realize o reset do encoder, calibre as correntes nas 3 fases do motor e aperte para fazer o reset do software (3 botões):

Misc. Functions			
Absolute Encoder Res	et		
Multi-Turn Data	-15	Rev.	
	Reset		
Calibrate Current Offs	et		
U phase current	0	%	
V phase current	-0,6	%	
W phase current	0	%	
	Calibrate		
Software Reset			
Drive will be reset by	software !		
	SW Reset		

Figura 18 - Parâmetros de Misc. Function.

SIMILAR TECNOLOGIA E AUTOMAÇÃO

AUTO-TUNING (AUTO-SINTONIA)

1- Entre em "Procedures" -> "Auto-Tuning":

Proced	lures	Advanced	Indexer	Object D
P	rogran	n Jog		
Μ	1anual	Jog		
A	uto-Tu	uning		
P	TP Mo	ve		
Н	loming	J		
Т	ouch I	Probe		
Μ	lotor/H	Hall Phase Co	prrection	
Μ	lisc. Fi	unctions		

Figura 19 - Auto-Tuning.

2- Instale a carga que será utilizada no servo motor (fisicamente), pois o Auto-Tuning realizará alguns testes rotacionando o eixo com a carga para definir os seguintes parâmetros de sintonia:

Inertia Ratio	0	%
Position Loop Gain 1	22	1/s
Speed Loop Gain 1	33	Hz
Speed Loop Integral Time Constant 1	30	ms
Torque Command Filter Time Constant 1	8	0.1ms
Notch Filter 3 Freq	5000	Hz
Notch Filter 4 Freq	5000	Hz

3- Os parâmetros do Auto-Tuning podem ser vistos na figura abaixo e serão explicados a seguir, em que foi será explicado como realizar o Online Tuning.

SIMILAR TECNOLOGIA E AUTOMAÇÃO

Simila Tecnologia e Automaçã	ăo
Auto Tuning I	
Rigidity for Tuning - 5	
Off-Line Tuning Tuning Direction Tuning Distance 10	
On-Line Tuning Use On-line Tuning Tuning Adaptation Speed 3	
C Read III 💊 Tuning	

Figura 21 - Sintonia.

Os Parâmetros de "Rigidity" e "Off-Line Tuning" são utilizados para realizar a sintonia offline, conforme o diagrama de blocos a seguir:

Figura 22 - Diagrama de blocos para o Offline Tuning.

O Online Tuning é uma função da configuração automática de ganho proporcional, ganho proporcional de velocidade, constante de tempo integral da velocidade e filtro de comando

SIMILAR TECNOLOGIA E AUTOMAÇÃO

de torque de acordo com as regras gerais e rigidez (rigidity) definida pelo usuário, com base em estimativas da inércia do sistema e comandos recebidos dos dispositivos superiores e não usando o ajuste automático off-line gerado pelo drive em si.

A função executa a sintonia online (online tuning) consultando os valores na tabela de ganho em 20 graus de rigidez, reflete regularmente os resultados da sintonia e salva os valores de ganho alterados a cada 2 minutos na EEPROM.

Isto pode refletir nos valores da estimativa, seja lentamente ou rapidamente, de acordo com o valor de adaptação da configuração de velocidade, e determina a capacidade de resposta geral do sistema usando apenas um único parâmetro de configuração de rigidez.

Nos casos abaixo, a estimativa da taxa de inércia pode estar incorreta pela sintonia automática online.

- A variação da carga é muito alta
- A rigidez da carga é muito baixa ou a folga do sistema é severa
- A carga é muito pequena (menor que x3) ou muito grande (maior que x20)
- A aceleração ou desaceleração é muito baixa, resultando em insuficiência do torque de aceleração / desaceleração (inferior a 10% do valor nominal)
- A velocidade de rotação é baixa (inferior a 10% do valor nominal)
- O torque de fricção é alto

Nas condições acima ou quando a auto sintonia não melhorar a operação, execute a sintonia de ganho offline.

 "Rigidity for Tuning": Há 20 graus diferentes de rigidez conforme a Figura 23. Se você selecionar um valor de configuração de rigidez do sistema, os valores de ganho (Position Loop Gain 1, Speed Loop Gain2, Speed Loop Integral Time Constant 1, Torque Command Filter Time Constant 1) são determinados automaticamente. O valor de configuração de fábrica da rigidez do sistema é 5.

Aumentar o valor de configuração da rigidez do sistema aumenta os valores de ganho e reduz o tempo de posicionamento. No entanto, se o valor ajustado for muito alto, poderão ocorrer vibrações dependendo da configuração da máquina. Os valores de rigidez do sistema precisam ser definidos de valores baixos a altos dentro da faixa em que não há vibração.

SIMILAR TECNOLOGIA E AUTOMAÇÃO

[0x250E] System Rigidity	1	2	3	4	5	6	7	8	9	10
[0x2101] Position Loop Gain 1	2	5	10	15	22	30	40	50	60	73
[0x2102] Speed Loop Gain 1	3	8	15	23	33	45	60	75	90	110
[0x2103] Speed Loop Integral	190	70	50	40	30	22	15	13	10	9
Time Constant 1										
[0x2104] Torque Command Filter	00	20	20	10	0	6	4	2	2	2
Time Constant 1	80	50	20	10	0	0	4	5	5	2

[0x250E] System Rigidity	11	12	13	14	15	16	17	18	19	20
[0x2101] Position Loop Gain 1	87	100	117	133	160	173	200	220	240	267
[0x2102] Speed Loop Gain 1	130	150	175	200	240	260	300	330	360	400
[0x2103] Speed Loop Integral Time Constant 1	8	7	6	6	5	5	4	4	3	3
[0x2104] Torque Command Filter Time Constant 1	2	2	2	2	1	1	1	1	1	1

Figura 23 - Tabela de rigidez (rigidity).

- II. "On-Line Tuning": marque a caixa de seleção "Use On-Line Tuning" e altere o parâmetro de "Tuning Adaptation Speed". Este é utilizado para especificar a velocidade de refletir as alterações de ganho da sintonização automática online. Quanto maior o valor da configuração, mais rapidamente as mudanças de ganho são refletidas.
- III. "Tuning": Clique no botão "Tuning" para realizar a sintonia, o servo motor irá rotacionar para ambos os lados e os parâmetros de controle serão fornecidos.

Caso seja necessário realizar a sintonia manualmente, ou se o Engenheiro de Controle já realizou a modelagem do sistema e possui os parâmetros de controle, os parâmetros podem ser inseridos conforme os passos a seguir:

4- Entre em "Advanced" -> "Controls.

Advanced	Indexer	Obj
Contro	ols	- i

Figura 24 - Advanced Controls.

5- E os parâmetros de cada bloco do diagrama de blocos podem ser definidos.

SIMILAR TECNOLOGIA E AUTOMAÇÃO

Figura 25 - Diagrama de blocos dos parâmetros de controle.

SIMILAR TECNOLOGIA E AUTOMAÇÃO

TESTE DO SERVO DRIVE NO DRIVE CM

MONITORAMENTO

Há dois tipos de monitoramento, o "Trace/Trigger Graph" e o "Cyclic Monitor". Ambas são muito úteis para configurar e testar o servo motor.

O Trace/Trigger Graph mostra os gráficos dos parâmetros definidos e também possui a opção de "Gain Window", que é muito útil para a sintonia dos parâmetros de controle do servo drive e servo motor.

Figura 26 – Trace/Trigger Graph.

Já o "Cyclic Monitor" ilustra as informações do Driver em formato de texto, em que o Display do driver pode ser configurado no parâmetro "7 Segment Display".

Encoder		
SingleTurn Data	102101	pulse
Mechanical Angle	280,4	degree
Electrical Angle	-138,3	degree
MultiTurn Data	7	revolutions
General		
Drive Temperature 1	44	°C
Drive Temperature 2	38	°C
Encoder Temperature	0	°C
Hall Signal Value	0	(1 ~ 6)
Warning Code	0x0	No warning
DC-Link Voltage	317	Volt
Current Time and Date	02/20/2020 09:27:09	Month/Date/Year Hour:Minute:Second
7 Segment Display	poppo	Monitoring Start/Stop
Drive operation status	〕 └╶╻└╶╷└╵ ╸└┙╸└╹╸	

Figura 27 - Cyclic Monitor.

SIMILAR TECNOLOGIA E AUTOMAÇÃO

MANUAL JOG

1- Para um teste de manual Jog e ver a movimentação do servo motor e o sentido de rotação, entre em "Procedures" -> "Manual Jog"

Proc	edures	Advanced	Indexer	Object D
	Program	n Jog		
	Manual	Jog		
	Auto-Tu	uning		
	PTP Mo	ve		
	Homing	J		
	Touch I	Probe		
	Motor/H	Hall Phase Co	prrection	
	Misc. Fi	unctions		

Figura 28 - Manual Jog.

2- Os parâmetros do Manual Jog podem ser vistos na figura abaixo e serão explicados a seguir:

Manual Jog				
Speed	1000	rpm(mm/s)		
Accel Time Decel Time S-curve Time	200 200 0	ms ms ms		
Servo-Lock FB Speed 2 FB Position	976137	IV rpm(mm/s) UU V		
Servo-Lock FB Speed 2 FB Position II Read	976137	IV rpm(mm/s) UU V ▶ Positive		
Servo-Lock FB Speed 2 FB Position II Read	976137 Image: Provide the second sec	IV rpm(mm/s) UU V ►► Positive Drive OFF		

Figura 29 - Parâmetros de Manual Jog.

- I. "Drive On": Aperte este botão para ligar o servo drive;
- II. "Read": Aperte este botão para atualizar os dados de "Feedback Speed" e "Feedback Position";

SIMILAR TECNOLOGIA E AUTOMAÇÃO

- III. "Speed": Este é o campo para escolher a velocidade nominal de operação do servo motor;
- IV. Estes são os campos para escolher o tempo de aceleração do servo motor, quanto menor o tempo, mais rápido será a aceleração do motor. Há dois tipos de aceleração, o primeiro é quando o parâmetro "S-Curve Time" é igual a 0:

Figura 30 - Gráfico de aceleração e desaceleração.

Então a aceleração e a desaceleração se comportam como rampas.

A segunda é quando o parâmetro "S-Curve Time" é igual ou maior que 1:

É utilizado para suavizar o comportamento de aceleração e desaceleração do servo motor, evitando movimentos mecânicos muito bruscos.

- V. E os botões "Negative" e "Positive" movimentam o servo motor de acordo com os parâmetros preenchidos nos campos. O botão pode ser pressionado pelo tempo necessário em que se deseja realizar o Manual Jog.
- VI. "Drive Off": Após os testes, o drive pode ser desligado apertando este botão.

PROGRAM JOG

1- Para um teste de program Jog e ver a movimentação do servo motor e o sentido de rotação, entre em "Procedures" -> "Program Jog"

SIMILAR TECNOLOGIA E AUTOMAÇÃO

Figura 32 - Program Jog.

2- Os parâmetros do Program Jog podem ser vistos na figura abaixo e serão explicados a seguir:

*	Pro	ogram Jo	og
	- Speed		
	Jog Speed 1	0	rpm(mm/s)
	Jog Speed 2	500	rpm(mm/s)
	Jog Speed 3	0	rpm(mm/s)
- 11	Jog Speed 4	-500	rpm(mm/s)
	- Time —		
E	Jog Time 1	500	ms
	Jog Time 2	500	ms
IV	Jog Time 3	500	ms
	Jog Time 4	500	ms
	- Smoothing		
	Accel Time	200	ms
- V	Decel Time	200	ms
rdi 🗌	S-curve Time	1	ms
	FeedbackFeedb	ack ———	
	Servo-Lock		
	FB Position	36594457	UU
	FB Speed	° VI	rpm(mm/c)
			_
	Read	🕨 Run	Stop
-	Drive (N 🛛	Drive OFF
F		I	VIII
			VIII

Figura 33 - Parâmetros de Program Jog.

- I. "Drive On": Aperte este botão para ligar o servo drive;
- II. "Read": Aperte este botão para atualizar os dados de "Feedback Speed" e "Feedback Position";

SIMILAR TECNOLOGIA E AUTOMAÇÃO

- III. "Speed": Estes campos são utilizados para escolher a velocidade nominal de operação do servo motor em cada Jog. São 4 opções de Jog em que o servo motor gira sequencialmente de 1 a 4 e a velocidade pode ser positiva ou negativa (-);
- IV. "Time": Estes campos são utilizados para determinar o tempo que o servo motor irá rotacionar na velocidade escolhida em Speed (III), por exemplo: com 1000 ms o servo drive ficará 1 segundo girando no sentido e velocidade definidos em "Speed";
- V. "Smoothing": Estes são os campos para escolher o tempo de aceleração do servo motor, quanto menor o tempo, mais rápido será a aceleração do motor. Há dois tipos de aceleração, o primeiro é quando o parâmetro "S-Curve Time" é igual a 0:

Figura 34 - Gráfico de aceleração e desaceleração.

Então a aceleração e a desaceleração se comportam como rampas.

A segunda é quando o parâmetro "S-Curve Time" é igual ou maior que 1:

Figura 35 - Gráfico do S-Curve.

É utilizado para suavizar o comportamento de aceleração e desaceleração do servo motor, evitando movimentos mecânicos muito bruscos.

- VI. "Run": Inicia o Program Job;
- VII. "Stop": Para o Program Job;

SIMILAR TECNOLOGIA E AUTOMAÇÃO

VIII. "Drive Off": Após os testes, o drive pode ser desligado apertando este botão.

Uma programação conforme a Figura 36 gera o gráfico de velocidade x tempo da Figura 37.

Speed		
Jog Speed 1	0	rpm(mm/s)
Jog Speed 2	500	rpm(mm/s)
Jog Speed 3	0	rpm(mm/s)
Jog Speed 4	-500	rpm(mm/s)
Time —		
Jog Time 1	500	ms
Jog Time 2	5000	ms
Jog Time 3	500	ms
Jog Time 4	5000	ms

Figura 36 - Exemplo de Program Jog.

Figura 37 - Gráfico da velocidade x tempo do program jog.

PTP MOVE

Para realizar o teste de movimentação do servo motor pela posição e não pela velocidade, a função PTP Move deve ser utilizada.

SIMILAR TECNOLOGIA E AUTOMAÇÃO

1- Para um teste de PTP Move e ver a movimentação do servo motor pelo posicionamento fornecido pelo encoder, entre em "Procedures" -> "PTP Move"

Proce	dures	Advanced	Indexer	Object I
F	Program	n Jog		
N	Manual	Jog		
Ļ	Auto-Tu	uning		
F	РТР Мо	ve		
H	Homing	J		
1	Fouch F	Probe		
M	Motor/H	Hall Phase Co	prrection	
M	Misc. Fu	unctions		

Figura 38 - PTP Move.

2- Os parâmetros do PTP Move podem ser vistos na figura abaixo e serão explicados a seguir:

PT	Ρ	Move	II
Target Position Profile Velocity Profile Accel Profile Decel	0		UU UU/s UU/s ² UU/s ²
Use Modulo Func Modulo Factor* Modulo Mode *) need a power read	tion*	• : Use Modulo	UU VII
Position Window Position Time Stop Decel			UU IIII ms UU/s ²
Reverse and repering Target Position 2 Dwell Time	eat (/ 100 100	Abs. move o 000 00	nly) IV UU ms
FB Position Set Position Relative Move	0 1	InPosition	UU V UU Set
Move	I	••	
Drive ON			rive OFF

Figura 39 - Parâmetros do PTP Move.

SIMILAR TECNOLOGIA E AUTOMAÇÃO

- I. "Drive On": Aperte este botão para ligar o servo drive;
- II. "Target Position": O parâmetro Target Position, do modo Profile Position (PP), é utilizado para mover o servo motor até a posição desejada. Cada volta no eixo do servo motor é a resolução do encoder, que neste caso é de 131072 UU.

Ao enviar o servo motor da posição 0 até a posição 131072, o gráfico de posição e do encoder é o seguinte:

CH3 : Encoder SingleTurn Data[pulse]	CH4 : Position Actual Value[UU]
	140000 120000 100001 100001 100000
	2000 2000 4000 4000 2000 2000 2000 2000
-4,0000 -2,0000 0,0000 2,0000 4,0000 6,0000 Time (ew)	0 -4,0000 -2,0000 0,0000 2,0000 4,0000 6,0000 Time (see)

Figura 40 - Gráfico da posição e do encoder para o Profile Position.

- III. "Position Window": Neste parâmetro é definido o intervalo de tolerância da posição do servo motor, caso ele esteja dentro da tolerância, a caixa "In Position" ficará da cor verde, caso contrário da cor do fundo do software.
- IV. Ao habilitar a caixa de seleção "Reverse and Repeat", o servo motor rotacionará até a posição definida em "Target Position" e depois irá até a posição definida em "Target Position 2", repetindo este movimento.

Figura 41 - Gráfico da posição e do encoder para o Reverse and Repeat.

V. Ao clicar no botão "Set", a posição atual do eixo do servo motor será definida pelo valor inserido no campo "Set Position". Caso a caixa de seleção de "Relative Move" esteja marcada, o movimento do servo motor é realizado para a posição igual a posição atual mais a posição definida em "Target Position":

SIMILAR TECNOLOGIA E AUTOMAÇÃO

LISTA DE FIGURAS

Figura 1 - Instalação Elétrica	3
Figura 2 – Alimentação do servo motor	3
Figura 3 - Tabela de resistor regenerativo.	4
Figura 4 - Alimentação do servo drive	4
Figura 5 - Ligação do cabo de Encoder	5
Figura 6 - Conexão USB no Drive CM	6
Figura 7 - Motor Encoder	6
Figura 8 - Parâmetros de Motor Encoder	6
Figura 9 - Motor ID	7
Figura 10 - Save to Memory	7
Figura 11 - Software Reset	8
Figura 12 - Parâmetro de resolução do encoder	
Figura 13 - Resistor Regenerativo	
Figura 14 - Parâmetros do resistor regenerativo	9
Figura 15 - Entrada digital	9
Figura 16 - Parâmetros de entrada digital	9
Figura 17 - Misc. Functions	
Figura 18 - Parâmetros de Misc. Function	
Figura 19 - Auto-Tuning	
Figura 20 - Parâmetros de sintonia	
Figura 21 - Sintonia	
Figura 22 - Diagrama de blocos para o Offline Tuning	
Figura 23 - Tabela de rigidez (rigidity)	
Figura 24 - Advanced Controls.	14
Figure 25 - Discremende blasse des novêmetres de controls	15

SIMILAR TECNOLOGIA E AUTOMAÇÃO

igura 26 - Manual Jog	17
igura 27 - Parâmetros de Manual Jog	17
igura 28 - Gráfico de aceleração e desaceleração	18
igura 29 - Gráfico do S-Curve	18
igura 30 - Program Jog	19
igura 31 - Parâmetros de Program Jog	19
igura 32 - Gráfico de aceleração e desaceleração	20
igura 33 - Gráfico do S-Curve	20

SIMILAR TECNOLOGIA E AUTOMAÇÃO